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finding differences from complete data sets with pos- 
sible scaling errors. 

Errors in assessing g values are probably not too 
critical in the sense that a sufficient number of reliably 
indicated values will usually be available. Any g not 
reliably estimated may simply be rejected. It will also 
be seen from Fig. 2 that even if the accuracy of A(h), 
A(h) measurements is sufficient only to be in the 
correct quadrant of the diagram an error in 0 [and 
hence in q~(h)] will result which will be quite accep- 
table by the standards of protein crystallography. 

Although the determination of (g, 0) solutions has 
been explained in terms of the diagram in Fig. 2, in 
practice these can be deduced for any 6, A(h) and 
A(h) from a simple computer program. 

Tests need to be done to confirm or otherwise the 
effectiveness of this procedure. It is hoped to be able 
to report on such tests in due course. 
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Abstract 

The symmetry of an incommensurately modulated 
structure may be described in terms of the basic 
structure (B) and the modulation pattern (M). This 
description contrasts with the superspace-group 
approach, in which the structure is defined in a space 
of dimension 3+d,  where d is the number of 
rationally independent modulation vectors. Space 
groups GB and GM are defined, consisting of sym- 
metry operations of B and M which are simply inter- 
related. These groups together characterize the total 
symmetry; they lead to a classification which for d = I 
is equivalent to the superspace groups. With this 
dualistic approach, all symmetry operations can be 
based on symmetry elements in the space of the 
crystal, and the lattice types can be composed simply 
from those of GB and GM. 

1. The dualistic approach 

We shall exemplify the modulation phenomenon by 
a hypothetical two-dimensional compound OX, in 
which the X atoms are not modulated at all. The 
basic structure is orthogonal, plane group pmm, basic 
vectors a, b; Z = 1 (Fig. 1). We assume modulation 
of the O atoms with a wave vector fib*, where/3 = b/h 
is an irrational number, A being the modulation 
wavelength. Then for a transverse displacive type of 
modulation, the crystal might look as in Fig. 2. The 
periodicity in the direction of b is lost - at least when 
'periodicity' is taken in the usual sense. However, 
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there is still perfect order in this direction - only there 
are two periods instead of one, viz b and A. 

The structure has, therefore, a dual character, being 
composed of the basic structure and a modulation 
pattern. The latter is indicated by the dashed wavy 
line in Fig. 2. Such a line becomes ambiguous as soon 
as a longitudinal component of the displacement is 
present (Fig. 3). In that case, a complete vector func- 
tion is required, representing the displacement vector 
u as a periodic function of Y, the coordinate in the 
direction of b. It is important to specify that u(Y~) is 
the displacement of an atom which in the basic struc- 
ture (not in the modulated one) has Y = Y~. 

In this way the modulated structure of Fig. 3, too, 
can be decomposed into two components: the basic 
structure and u(Y). Each of these is strictly periodic 
within the two-dimensional space considered here. 
Therefore the symmetry of the crystal can be 
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Fig. 1. Two-dimensional crystal XO, basic structure for the modu- 
lated structures in Figs. 2-5. 
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described by the symmetry groups of the two com- 
ponents, both defined in the space of the crystal; this 
is what we mean by the dualistic approach. 

2. Scope of dualistic v s  superspace approach 

The above dualistic description can be contrasted 
with a former approach (de Wolff, 1974; de Wolff, 
Janssen & Janner, 1981, referred to as I in this paper) 
in which a fully periodic representation of the struc- 
ture is defined in a space of higher dimension, such 
that the actual modulated structure is a section 
through this 'supercrystal'. In the present example, 
the supercrystal is three dimensional and Fig. 2 or 3 
is a plane section through it. A modulated crystal in 
three-dimensional space is the section made by that 
space (considered as a hyperplane in R4) through a 
four-dimensional supercrystal or, if there are d 
independent modulation wave vectors, through a (3 + 
d)-dimensional supercrystal. From the above- 
mentioned papers it follows that 

(i) this supercrystal is an adequate representation 
of any kind whatsoever of a modulated structure 
yielding an incommensurate satellite-type diffraction 
pattern. Actually the structure factors of the diffracted 
reflections, indexed unambiguously by 3 + d indices 
each, are the Fourier coefficients of the supercrystal's 
periodic density in (3 + d)-dimensional space. 

(ii) all conceivable symmetry operations of the 
modulated structure, including translations, corre- 
spond to elements of the supercrystal's full symmetry 
group in (3 + d)-dimensional space. Accordingly the 

latter - the so-called superspace group - represents 
the full symmetry of the modulated crystal. 

An explanation is called for with regard to the 
expression 'symmetry operation of the modulated 
structure' used in (ii). Consider for instance a 'lost' 
symmetry translation like b in Fig. 2. Such an oper- 
ation can be retrieved as a symmetry operation if it 
is combined with a suitable shift of the modulation 
pattern. This pattern (the dashed line in Fig. 2 or the 
vector function in Fig. 3) simply has to be moved 
back over b in order to restore the original situation. 
An essential feature of incommensurate crystals is 
the fact that such a shift of the modulation pattern 
(not only by b but by any amount) leaves the structure 
virtually unaltered. In the superspace approach the 
shift is expressed by a change At of t, the modulation 
phase divided by 2rr. In the above example this would 
amount to At = b / A  = ft. The extra parameter t is in 
fact a coordinate defining the extra dimension used 
in that approach. If d modulation wave vectors are 
involved then also d extra parameters are required 
in accordance with the corresponding (3+d) -  
dimensional superspace groups. In the dualistic 
approach, on the other hand, the modulation pattern 
is considered separately from the basic structure; shift 
parameters, like the phase coordinate t, are not 
explicitly used. They enter only in the derivation of 
the key relation between corresponding symmetry 
operations of the two structural components (§ 5). 

Both approaches deal with the same phenomenon, 
and it is the interpretation rather than the symmetry 
classification which differs. In particular, for d = 1, 
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Fig. 2. Transverse displacive modulation of O atoms in XO. The 
modulation wavelength A is shown at left. 
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Fig. 3. General displacive modulation of  O atoms in XO. The 
arrows indicate the modulation vector function u(Y), wave- 
length A. 
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the dualistic classification is fully equivalent to the 
superspace groups. In § 10 we shall show that the 
dualistic interpretation is, to a certain extent, also 
applicable when d = 2 or 3. In view of the fact that 
the cases of modulation known so far have mostly 
d = I, rarely d = 2, and very seldom d = 3, further 
examination of the dualistic approach seems worth 
while. 

3. Axial modulation patterns 

Let us assume that periodicity is 'lost' in just one 
dimension. In more exact terms, this means that perio- 
dicity of the modulated crystal still holds in one 
direction for a two-dimensional crystal, or in two 
directions (that is, in a plane) for a three-dimensional 
crystal. Moreover, we assume that this situation arises 
because of symmetry (for instance, in Fig. 2 both the 
basic structure and the modulation pattern have 
horizontal mirror lines; this leads to identical 
horizontal symmetry translations for both, which are 
valid for the actual structure as well). In that case we 
characterize it by the term 'axial modulation' ,  and we 
define the direction perpendicular to the true transla- 
tions as the axis of the modulation. In reciprocal 
space all reflections lie on a periodic array of lines 
parallel to this axis, and for the whole pattern the 
latter is an axis of rotational symmetry. 

Because of the assumed symmetry, the axial direc- 
tion is along a lattice vector of the basic structure. 
Modulation functions can, therefore, be defined on 
axial lines through rows of atoms, like the vertical 
ones in Fig. 2. We shall show now that the resulting 
axial modulation patterns are particularly useful in 
analysing the symmetry of an axially modulated 
crystal. 

Modulat ion of incommensurate crystals is illus- 
trated most clearly - without loss of generality as 
regards symmetry - when it affects a scalar quantity. 
Therefore, in Fig. 4 we show an occupation density 
modulation of the O atoms in our compound XO. 
The occupat ion  density at a given atomic site is the 
value of the wave-like pattern at that site. The wave 
has been drawn in columns, though it could as well 
have been drawn as a wave covering the plane. 

In Figs. 2-4, the difference between a full wave on 
the one hand and a set of identical functions defined 
on parallel lines on the other is utterly trivial. A 
striking aspect appears, however, when we look at 
Fig. 5. Here successive columns are shifted mutually 
by ½A, resulting in a centring of the modulation pat- 
tern's translation net. This centred rectangular net, 
symbol oc,* and the primitive (op) net of the basic 

* In  these  Bravais - la t t ice- type  symbols ,  i n t r o d u c e d  in Interna- 
tional Tables for Crystallography (1983), the usual  cen t r ing  letter  ( p, 
c, P, C, . . . )  is p r e c e d e d  by a letter ind ica t ing  the crystal  fami ly  as 
fo l lows:  a( t r ic l inic) ,  m ( o n o c l i n i c ,  obl ique) ,  o ( r t h o r h o m b i c ,  rec- 
t angula r ) ,  t ( e t ragona l ,  square) ,  h (exagona l )  and  c(ubic) .  

structure together determine the translational proper- 
ties of the modulated structure. In the superspace 
approach, the latter are expressed as a single-Bravais- 
lattice type in (2 + 1)-dimensional space. In dualistic 
terms, exactly the same properties are described by 
the ordered pair of the two-dimensional lattice types. 
This pair is written here as o p, the upper line referring 
to the basic structure, and the lower one to the modu- 
lation pattern. The alternative op/oc will also be used. 

In Fig. 5 it is seen that symmetry operations of the 
basic structure correspond to similar operations in 
the modulation pattern. Half  of the vertical mirror 
lines are also present in the latter, while the other 
half become glide mirror lines. Horizontal mirror lines 
and centres of inversion are also present in both 
components, though of course they cannot coincide 
because of the incommensurability. 

One more example will now be given, because the 
special positions of X and O in Figs. 2-5 prevent an 
adequate appreciation of the space-group relations. 
Fig. 6 shows a two-dimensional compound Xp2 with 
space group pgg, all atoms X on inversion centres 
and atoms p in a general position. The axial modula- 
tion pattern corresponds to an occupation density 
modulation of p atoms only. The axis of modulation 
is vertical, so the pattern consists of vertical lines 
through p atoms, as well as a periodic modulation 
function on each line. These functions are of the most 
general asymmetric type. Thereby it is possible to 
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Fig. 4. O c c u p a t i o n  dens i ty  m o d u l a t i o n  o f  O a t o m s  in XO. The  
sca la r  m o d u l a t i o n  func t ion  is ind ica ted  by the  dens i ty  o f  h a t c h i n g  
on  vert ical  strips, each  o f  wh ich  represents  an axial  e l emen t  o f  
the  m o d u l a t i o n  pat tern .  The  ac tua l  func t ion  values  at the sites 
o f  O a t o m s  are s h o w n  at r ight  in the same  way.  The  r ec t angu la r  
unit  cell o f  the m o d u l a t i o n  pa t t e rn  has  the edges  a, A. 
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show that horizontal  glide mirror  lines occur not only 
in the basic  structure but  also in the modula t ion  
pattern, resulting in reversed scalar funct ions for b 
and d as compared  with p and q. The reversal is 
necessary i f  a horizontal  mirror  is to be conserved as 
an e lement  of  the point  group of  the modula ted  
structure as a whole, cf. § 5. 

4.  q e q u i v a l e n c e  

In Fig. 6 we observe that the vertical glide mirrors of  
the basic  structure are replaced by mirror  lines in the 
modula t ion  pattern, which therefore has the space 
group pmg. As an alternative, one could think of 
vertical glide mirror  lines in the modula t ion  pattern. 
The latter would then assume the same symmetry,  
pgg, as the basic structure. It turns out, however,  that 
the combined  symmetr ies  which we shall  indicate 
provis ional ly  (cf. § 7) by 

Pgg and Pgg (1) 
pmg pgg 

(where again the upper  line refers to the basic struc- 
ture) are equivalent  in a special sense which we shall 
indicate by the term q equivalent. The term applies 
to different pairs of  space groups, like those in (1), 
which can describe the symmetry  of  exactly the same 
structure - though with different values of  A (or of  
the modula t ion  vector q, whence the name).  For (1), 
q equivalence is shown as follows. In Fig. 6 the 
modula t ion  functions for both p and q atoms can be 
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Fig. 5. As Fig. 4. but with shift of ½ between successive axial 
elements, resulting in a centred lattice of the modulation pattern, 
as shown by its unit cell, edges 2a, h. 

written - because of  the vertical mirrors in the modu-  
lation pattern - as the same Fourier  series: 

f ( y )  = ~  A,  exp(2zrniy/A). (2) 

Supposing the p atoms to lie at y = rob, m integer, 
we obtain for them 

f ( m b ) = ~  A,  exp(27rnimb/h) (3) 

and for the q atoms at y = (m +½)b: 

f(m+½)b=Y A. exp{2zrni(m+½)b/h}. (4) 

Now if  we replace h by h '  defined by 

I /A'-- 1~X-lib (5) 
while retaining the mirror  lines, (3) is clearly not 
changed in value, but  (4) becomes 

~, A,  exp {2 zrni( m +~)b /h '}  

= ~ A,, exp {27rni(m +½)b/h -zrni} 

= f { (m+½)b-h /2} .  (6) 

This would also have been the result for q atoms if  
we had  assumed a glide mirror  in the original modula-  
tion pattern with wavelength h. Hence we have shown 
that this glide mirror  yields exactly the same structure 
as a true mirror  for the pattern with wavelength h' .  

The same reasoning can be used to show that q 
equivalence may  occur whenever  a symmetry  oper- 
ation of  the basic structure contains an intrinsic trans- 
lation equal  to ha l f  the axial repetit ion period, such 
as the t ranslat ion ½b contained in the glide reflections 
treated above. In three dimensions ,  fractional transla- 
tions of  ¼, ½ or ~ occur, and these can give rise to q 
equivalence as well. 
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Fig. 6. Two-dimensional compound Xp2. Basic structure: plane 
group pgg, glide lines indicated at left and at the top. Modulation 
pattern of axial scalar modulation: plane group pmg, g and m 
lines indicated at right and below. 
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Moreover, important cases of q equivalence arise 
when the Bravais lattice of the basic structure contains 
centring translations with a fractional component in 
the axial direction. This already occurs in two 
dimensions. Here a basic structure with a centred 
orthogonal lattice apparently gives rise to two differ- 
ent Bravais types 

OC OC 
and (7) 

op oc 

but the equations (2-6) used above for atoms related 
in the basic structure by a glide reflection are equally 
valid for atoms related by the centring translation in 
(7). Hence the two types (7) are q equivalent. The 
mutual disposition of the unit cells is indicated 
schematically in Fig. 7; see also next section. 

q equivalence is by no means restricted to the 
dualistic approach. In (I) it is mentioned in the defini- 
tion of superspace-group types ('q is determined. . .  
up to a reciprocal basic lattice vector', p. 630), and 
it has been one of the main equivalence criteria used 
in eliminating superfluous entries in (I), Table 2. It 
has been treated explicitly here because it is often 
encountered in practice, whereas it is more difficult 
to recognize than other causes of equivalence. 

5. The two dualistic principles 

With regard to axial modulation patterns in general, 
there is an apparent complication when the axial lines 
through two different atoms coincide, whereas the 
two modulation functions differ. For instance, if there 
had been horizontal mirror lines in Fig. 6, instead of 
glide lines, p and b atoms would sit on the same 
vertical line. In such cases the two coinciding axial 
lines, each with its own modulation function, must 
be considered as separate entities. We shall call a line 
plus the modulation function defined upon it an axial 
element of the modulation pattern. So, in the above 
case, p and b atoms still have different axial elements. 
Thereby we establish the first principle: that each 
atom o f  the basic structure belongs to just  one axial 
element o f  the modulation pattern. (The reverse is not 
true: atoms can share the same axial element, though 
this happens only if in the basic structure they are 
related by an axial symmetry translation.) 

II ]iI  
2 3 4 4 no. of  type 

Fig. 7. Two-dimensional lattices of Ga andGM showing identical 
projections (crosses) as required by (10). The numbers are those 
of the lattice types in Table I A as well as B. 

For the sake of simplicity, all considerations in this 
paper refer to point atoms (or spherically symmetrical 
atoms) only. However, they apply equally well to 
continuous charge distributions; in that case, volume 
elements in the basic unit cell take over the r61e of 
atoms and there is a separate density modulation 
function for each volume element. 

Now we introduce the second principle. It is based 
upon the essential feature of incommensurate crystals 
mentioned in § 2, viz the fact that they are virtually 
invariant for any axial translation, t~, applied to the 
modulation pattern. In this sense, any symmetry oper- 
ation of the modulated crystal can be described as a 
symmetry operation gB of the basic structure (but 
applied to the actual modulated structure!) supple- 
mented by such a shift t, of the modulation pattern 
alone. Since this combined operation is required to 
be a symmetry operation of the actual crystal, it also 
transforms the modulation pattern into itself. There- 
fore the latter has a symmetry operation of its own: 

g~ = get,. (8) 

Here the index i(nvariant) refers to the invariance of 
the structure for t, in the above sense. It is used rather 
than a(xial), since exactly the same reasoning applies 
to planar and to spatial modulations. In the planar 
case, the translation t~ is parallel to the plane of the 
modulation just as here it is parallel to the axis; for 
spatial modulation, ti is arbitrary. 

The operations gB for which (8) allows a corre- 
sponding gM form a group GB. They obviously belong 
to the basic structure's space group S~, which can 
(but need not) be identical with GB. Similarly, the 
operations gM for which (8) is valid form the group 
GM ~ SM, SM being the space group of the modula- 
tion pattern. Relation (8) requires that the operations 
g~ and gM have identical point-group components. 
Accordingly, these form identical point groups Ks  = 
KM = K. All operations of K clearly must transform 
the axis of the modulation in itself. 

Equation (8) remains valid - with a different t, - 
if gM is supplemented by any axial translation con- 
tained in GM, or g~ by any axial translation of Ga. 
The groups Ta and Tc formed by these axial transla- 
tions mh and nb (m, n integers) are invariant sub- 
groups of GM and GB, respectively; and it is Tc and 
its cosets in GB which through (8) are related 1 : 1 to 
TA and its cosets in GM. 

To illustrate the fact that GB need not contain all 
symmetry operations of the basic structure, it suffices 
to imagine that the latter has tetragonal symmetry in 
Figs. 2-5, with a = b. Then it has symmetry rotations 
over ~-/2, but these cannot occur in G~ since they 
do not conserve the axial direction. Hence such oper- 
ations cannot fulfil (8). The full space groups S are 
not needed any further since the symmetry of the 
modulated crystal is determined completely by GB 
and GM. 
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Finally, it should be noted that the relation (8) is 
equivalent to relations like 

p ' ( x ) = p { e ( x - r ) }  (9) 

[equation (3.15) in (I), or equation (14) in de Wolff 
(1977)] describing the transformation of a scalar 
modulation function with unit period, p(x), in terms 
of the parameters e and r of a superspace symmetry 
operation. Here r is related directly to gM, cf. § 7. The 
parameter e is +1 or -1  for conservation or reversal 
of axial vectors; it does not appear in (8) because it 
is implicit in both gB and gM. 

6. Lattice types for axial modulation 

Since for axial modulation the groups GB and GM 
belong to the same geometric class defined by their 
common point group K, they also belong to the same 
system. We can therefore classify axially modulated 
three-dimensional structures as belonging to the 
monoclinic axial system, the orthorhombic axial sys- 
tem etc., without ambiguity. 

With regard to symmetry translations tB and tM 
contained in the lattices F8 and FM of GB and GM 
and related by (8), projection in the direction of ti 
yields 

tB i  = t M i ,  ( 1  O)  

tBi(tM~) being the projection of the translation vector 
of tn(tM) along the modulation axis. Equation (10) 
amounts to saying that the lattices F~ and FM, thus 
projected, coincide completely. This affords such a 
strong tie between FB and F~ that most of their 
possible combinations are fully characterized by 
merely stating the Bravais type of each. Only for the 
orthorhombic system a further specification is needed, 
namely if single-face centring occurs. 

In two dimensions, axial modulation occurs in the 
orthogonal system only. (The reason given in § 5 for 
excluding the quadratic one is also valid for the 
trigonal-hexagonal system. Oblique plane patterns 
can have planar modulation only, cf. § 8.) Of the four 
combinations allowed by the orthogonal net types op 
and oc, two are q equivalent as we saw in § 4. Fig. 7 
gives the mutual disposition of the unit cells for each 
combination. It shows that the conventional basis 
vectors of FB perpendicular to the modulation axis 
may differ from those of FM. Also indicated in Fig. 
7 is, for each combination, the lattice-type number 
listed together with the symbols in Table 1. The q- 
equivalent lattices belong to the same type, so in Fig. 
7 they receive the same number. 

In three dimensions, cubic symmetry of GB is 
incompatible with axial modulation. Triclinic space 
groups Gn lead to spatial modulation, cf. § 8. The 
lattice types for the remaining systems are listed in 
Table 1. Within a given system all types may combine, 
except for the orthorhombic system. For instance, if 

the modulation axis is c, an orthorhombic C-centred 
lattice for GB cannot be combined with a primitive 
lattice for GM because the axial projections of these 
two lattices can never be made identical. Only if the 
type of the second is either oC as well or ol is 
coincidence of the projections possible, as indicated 
in Fig. 8. Within each of the five sets of lattice types 
shown in Fig. 8, all pairwise combinations occur in 
Table 1 except for o P / o B  which is an obvious 
equivalent of oP/oA.  

Some data from Table 1 of (I) and of Janssen, 
Janner & de Wolff (1980) are cited in our Table 1, in 
order to make reference easier. This also shows an 
advantage of the dualistic notation, viz the possiblity 
to derive the complete translational symmetry from 
the symbol. The capital prefixes used in (I), on the 
other hand, are often without meaning. From a dualis- 
tic point of view, some are confusing, e.g. A for a 
B-centred lattice of GM and vice versa. Dualistic 
symbols for orthorhombic lattices can be adapted to 
any setting provided that the modulation axis label is 
specified. 

7. Derivation of GM from the superspace-group symbol 
for axial modulation 

In (I), two-line superspace-group symbols have been 
defined. The upper contains the symbol of GB. The 
axial direction can be derived from a clue contained 
in the lower line. Together with the capital prefix, 

• - ~ -  - - a - v 

mP mB ~L.~b hP 

oP oA a 
t * ' b  - oC  - - o l  - 

- tP 
oF oB 

Fig. 8. Three-dimensional lattices with identical axial projections 
as required by (10), for axial modulation along c, perpendicular 
to the plane of the paper. (a) Monoclinic; (b) orthorhombic P, 
A, B, F ;  (c) orthorhombic C, I ;  (d) tetragonal; (e) hexagonal- 
trigonal. Open circles: lattice nodes at a level halfway between 
the levels of  black circles" for h R  the nodes at +½ are shown. 
Within each of the five groups, any pair of  lattice types can 
combine so as to satisfy (10); this can be checked in Table 1. 



40 THE SYMMETRY OF INCOMMENSURATE STRUCTURES 

Table 1. Dualistic symbols for the lattice types of  modu- 
lated crystals with d = 1 

Columns 1, 2, 3: number, modulation vector (including rational 
centring components) and capital prefix of  superspace symbol, as 
given in the reference in the sub-heading. Column 4; dualistic symbol 
as defined in § 3; q-equivalent lattice types for GM are shown 
between parentheses and the one-dimensional type by u. Column 

5: crystal family of Gs, and type of modulation. 

A Two-dimensional crystals, cf. Janssen, Janner & de Wolff 
(1980), Table 1 

1 ct~ P mp/u oblique planar 

2 O~ P op/op rectangular axial 
3 ~ A op/oc 
4 Off P oc/op(c) 

B Three-dimensional crystals, cf. (I), Table l 

1 afly P aP/u triclinic spatial 

2 a~O P mP/op monoclinic planar 
3 afl~ C mP/ob c unique 
4 aflO P mB/op(b) 
5 00y P raP~ mP monoclinic axial 
6 ~0y A mP/mB c unique 
7 003' P mB/mP(B)  
8 O½ y B mB/mA 
9 OOy P oP/oP orthorhombic axial 

I0 0½Y B oP/oA modulation axis: c 
11 ~ y  W oP/oF 
12 003, P o l /oC( l )  
13 OOy P oC/oC 
14 100 L oC/o l  
15 003, P oA/oP(A) 
16 ~Oy A oA/oB(F) 
17 O0 y P oF/oP(F)  
18 103, L oF/oB(A) 
19 00y P tP/ tP tetragonal axial 
20 ~ y  W tP / t l  
21 OOy P t l / tP( I )  
22 OOy P hR/hP(R) hexagonal axial 
23 ~ y  R hP/hR 
24 OOy P hP/ hP 

these data can be used to find from Table 1 the lattice 
type of GM. The clue just mentioned consists in look- 
hag at the generators in the upper-line G~ symbol 
below which the character T appears in the lower line. 
These generators reverse all axial vectors, as 
expressed by e = - 1  in (I); the others (e = +1) con- 
serve them, and together they indicate the direction 
of the modulation axis. 

Now it may sometimes be desirable to derive the 
complete space group of GM, the lattice type having 
been found already by the means just indicated. It 
suffices to find operations of GM related by (8) to 
those of GB. that appear in the upper line. For a 
generator gB with e = - 1 ,  multiplication by t; as 
required by (8) merely shifts the symmetry element 
but does not otherwise change the operation. There- 
fore it should be given the same character as in GB, 
except when the non-axial basis vectors of GB and 
GM differ. In the latter case, the character must be 
determined by taking the mutual disposition of the 
two lattices into account (Fig. 8). 

Generators gB with e = +1 are represented on the 
lower line of the superspace-group symbol by a 

character depending oh r, r)t being the axial com- 
ponent of the intrinsic translation lint contained in 
the corresponding generator of GM. This character is 

I l, s, t, q or h for r = 0, ½, ~, ~ or ~,. Because of (8), the 
other - transverse - component of t~,t equals that of 
the intrinsic translation of the GB generator. For 
instance, if that generator in GB is an a-glide reflection 
in the a, c plane, the modulation axis being c, this 
transverse component is /a. If, further, the letter s 
appears below the a, then r = ½, so the axial com- 
ponent is ½A. The two components together define an 
n-glide reflection in the a, c plane in GM, provided 
that a is a basis vector for GM as well. 

Once the group GM is known as well as GB, from 
their two symbols a dualistic two-line symbol of the 
superspace group could be composed as was done 
above, in (1). Such symbols are however, incomplete 
unless they include information about the orientation 
of the modulation axis. Example: for a modulation 
axis along b, GB = A2/  m and GM = C2/m,  the super- 
space group might be described in a dualistic way as, 
for instance, 

mA 2/m 
(11) 

yC 2/m, 

writing yC instead of mC to indicate that the y axis 
is the modulation axis. However, the two space groups 
in (1 l) with their very unequal unit cells (cf. Fig. 9) 
are a serious risk when one deals with coordinate 
values. Therefore, symbols like (1 l) should be regar- 
ded as ad hoc symbols, to be used with great care. 

8. Planar and spatial modulation, d = 1 

The concept of axial modulation is useless in the case 
of oblique two-dimensional crystals, because these 
cannot have axial symmetry. Then one may as well 
consider the whole plane, plus the full modulation 
wave function defined upon it for a given atom, as 
the planar element assigned to that atom (and also to 
all translation-equivalent atoms). The modulation 
pattern now consists of all these overlapping planar 
elements. It has a one-dimensional lattice, of which 
there is only one type; hence, there is also just one 
lattice type in the oblique planar system in two 

Fig. 9. The axial projections of the lattice mA for Ga, and mB for 
GM in the symmetry group (l l), to show the very different unit 
cells which may occur. 
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dimensions for d = 1. The two symmetry groups - 
with and without an inversion centre - are equally 
obvious. 

In three dimensions planar modulation with d = 1 
occurs in the monoclinic planar system. There is normal 
periodicity in the direction of the unique axis of the 
basic structure, and the planar element for a given 
atom is perpendicular to it, while it passes through 
the atomic site, see Fig. 10. It is shared by all transla- 
tion-equivalent atoms lying in the plane of the ele- 
ment. The set of all these parallel planes, each with 
its one-dimensionally periodic modulation function, 
constitutes the modulation pattern. Since all 'ripples' 
are parallel, the pattern is two-dimensionally periodic 
and orthogonal, the basis vectors being directed along 
the wave normal and along the unique axis c. There- 
fore it can have either op or ob as its lattice type. 
Together with the types mP and mB allowed for the 
basic structure, we obtain four combinations, shown 
in Table 1. The mutual disposition is again given by 
Fig. 7, which now should be seen as a projection in 
a direction parallel to the ripples. This is so because 
the mutual disposition of the lattices / '8 and FM is 
still dictated by (10) since the key relation (8) remains 
valid. Only ti now is some translation parallel to the 
plane of modulation;  hence tBi and tMi are projections 
on the normal to that plane. Accordingly, the coin- 
cident projected lattices of GM and GB are one- 
dimensional, that is, they consist merely of equidistant 
points on that normal. 

Planar modulation with d = 1 can occur in the 
above systems only. Likewise, spatial modulation with 
d = 1 occurs only in the triclinic spatial system. Strict 
periodicity now happens in no direction at all (except 
by chance), so the elements are one-dimensionally 
periodic functions defined in the full space, one func- 
tion for every atom in the triclinic basic unit cell. The 
fact that they overlap completely must be interpreted 
in the same way as the overlap of lines which can 
happen for axial modulation, cf § 5. There is again 
just one lattice type, and there are two symmetry 
groups (with and without inversion). 

Y 

c 

Fig. 10. Planar element for an atom in a monoclinic structure with 
planar modulation, d = 1. The modulation wave vector is perpen- 
dicular to c. 

9. Planar and spatial modulation, d = 2 or 3 

In both two and three dimensions planar modulation 
can occur also for d =2.  Then the planar element 
bears a modulation function periodic in two 
dimensions. The corresponding lattice types and sym- 
metry groups for two-dimensional crystals have been 
listed (along with those for d -- l) by Janssen, Janner 
& de Wolff (1980) as superspace groups; their dualis- 
tic interpretation follows the lines set out in § 8. This 
will not be detailed here, but it should be mentioned 
that (8) still holds in the way described above for 
d = 1. For spatial modulation, ti is arbitrary so then 
(8) merely expresses the identity of the point groups 
KB and KM; this holds also for d = 1. 

No symmetry-group listing exists for three- 
dimensional crystals with either planar modulation 
and d = 2, or with spatial modulation and d = 2 or 3. 
Their lattice types can be derived from the compre- 
hensive listing of superspace lattices by Janner, 
Janssen & de Wolff (1983). As we stated before, struc- 
tures in these categories with d > 1 are not often met 
in practice. Nevertheless some do exist, such as the 
mineral wustite analyzed by Yamamoto (1982), where 
the symbol of a possible superspace group 

Fm3m 
P 

Pm3m 

could be written in the following dualistic way, 
analogous to (11): 

c Fm3m 
xyz Pm 3 m, 

using xyz to indicate the spatial character of the 
modulation. 

10. Discussion 

A dualistic interpretation of a given modulated struc- 
ture in terms of two periodic component structures 
is not possible when d > 3, whereas it is always poss- 
ible when d = 1. So the question remains to what 
extent that interpretation is applicable for a number 
d = 2 or 3 of independent modulation vectors. It can 
be answered by the statement that a dualistic interpre- 
tation in terms of the categories of § 9 exists provided 
that (a) no two modulation vectors are collinear; (b) 
no three are coplanar [disregarding any rational com- 
ponents, like ½ in ½0% as discussed in § 5 or (I)] because 
in these cases it is not possible to define the modula- 
tion pattern element as a periodic function on a line 
or plane or in space. 

No such restrictions hold for the superspace 
approach. For example, three Bravais types in two 
dimensions for d - - 2  (Janssen, Janner & de Wolff, 
1980) violate condition (a) by having collinear modu- 
lation vectors. Nor is that condition always fulfilled 
in practice. The known exceptions occur for matrix 
structures with channels, penetrated by more than 
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one system of chains in the channels. If the chains 
are incommensurable both with the matrix and with 
each other, then there is a modulation vector for each 
system, and these vectors violate (a). In such cases, 
an interpretation similar to the dualistic one is poss- 
ible only by allowing two or more modulation patterns 
- each of them periodic in space - to act on the same 
basic structure. 

Nearly all known modulated structures, however, 
can straightforwardly be interpreted in a dualistic 
way. The type of modulation (displacement or scalar 
density variation) plays no role for the symmetry; 
displacements have to undergo the symmetry oper- 
ations of GM as vectors. Thus it is possible to visualize 
the symmetry of a modulated structure just as easily 
as that of a normal one. In particular, the lattice and 
all symmetry elements of GM can be pinpointed in 
the direct space of the crystal. If a drawing is desired, 
it suffices to superimpose the symmetry element 
figures in International Tables for X-ray Crystallogra- 
phy (1969) for GM and GB. The graphic representation 
proposed earlier by the author (de Wolff, 198 I) comes 
very close to such a superposition. 

The author is indebted to Dr T. Janssen and Pro- 
fessor A. Janner (Institute for Theoretical Physics, 
University of Nijmegen) for reading the manuscript 
and for their very helpful remarks. 
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A b s t r a c t  

Three-periodic nets are connected graphs which per- 
mit embeddings having a threefold periodicity. To 
many crystal structures such nets can be meaningfully 
assigned and used to express the topology of the 
structures. It is shown that such a net can be fully 
characterized by a finite graph in which the edges are 
labelled in a suitable way. The reversal of the process 
of assigning a labelled finite graph to a given net can 
be used to generate nets of real and hypothetical 
crystal structures in a systematic fashion. 

* T o  whom correspondence should be addressed. 
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I .  I n t r o d u c t i o n  

This exposition deals with the various ways in which 
the atoms in crystal structures may be connected to 
each other. For such a study it is convenient to use 
the language and the tools of graph theory. The rela- 
tion between a crystal structure and a graph is estab- 
lished by identifying the atoms of the structure with 
the vertices of the graph and the chemical bonds with 
the edges. Such an assignment is straightforward for 
structures in which the bonds are largely covalent. 
For structures in which ionic, metallic or van der 
Waals bonds dominate, the method to be discussed 
may still be useful, but requires an assignment of 
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